Smart Electric Food Heater
HotBox

Ahmed Kazzoun, Chaitanya Vemuri,
Austin Tillotson, Haafiz Shafau

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,
Florida, 32816-2450

Abstract — The HotBox uses various different modern
technologies to solve a problem in the food industry. The
project is designed to house different kinds of warm-hot
ready-made food and keep them properly warm for
customer health and enjoyment. Once an order is in the
system and is placed in the vacant box, the box securely locks
the food inside. A notification (email) is then sent to the
customer, letting them know that their food is warming and
ready for pick up. The customer will also receive a QR
code/barcode in the notification for order validation. The
customer must scan their QR code/barcode in order to
unlock the box and take their ready warm food. Majority of
food that is ordered online and picked up in stores is cold
and unenjoyable to the customer. And due to the COVID-19
pandemic, online ordering was a necessity to a lot of
restaurants to reduce in person traffic. However, due to this,
a lot of restaurants had increased traffic due to more online
orders. With our system, we wish to provide customers with
warm safe food and limit in store traffic with our notification
system so you know when your food is hot and ready to be
eaten.

I. INTRODUCTION

For our senior design project, we will be developing a
smart food heating system named HotBox. In 2020, there
were over 60% of U.S. consumers who ordered either take
out or delivery food at least once a week, and due to
COVID-19, online ordering was the only primary source
of income for a lot of restaurants as well. Takeout and
deliveries have been on the rise ever since the arrival of the
pandemic. Apps and services like DoorDash and
UberEATS are preferred and more sought out rather than
going in store and ordering due to the risk of infection.
Restaurants and other food places have begun their own
online ordering system and allow consumers to order from
their devices and pick up or have it delivered to them.
With contactless ordering being in demand, the traffic of
restaurants will be high (independent of the quality of the
restaurant) for picking up the orders in the store. The more
orders that restaurant receives, the more traffic that will
occur in the restaurant. And a lot of restaurants limit a
certain number of people in the store to lower the risk of
infection as well. Our device’s goal is not only to keep the
food warm, but also to provide restaurants a way to limit

consumers inside by notifying consumers when their food
is ready and in the box warming. This report details how
we designed, created and configured our project in order
to meet the requirements and specifications we wish to
meet in order to meet our end goal design. The hardware
and software requirements and specifications requirements
will be detailed and expounded on.

For the paper, we divided it into two main sections,
main research and the implementation and process of
creating the design itself. In the first half of the paper, we
outline all the main research that went into the project.
The research portion of the paper consists of the possible
hardware components that would make up the system, the
software that was necessary for the hardware components
and the system to work together successfully. The criteria
and structure of the project as well as the specifications
that we put in place to make sure our system met them in
order for it to perform successfully are also covered. In the
second half of the paper, we go over the implementation
and design process of the HotBox. This section holds the
main hardware design and the final software
implementation. We fully discuss the design process of the
box and the integration of all the final chosen hardware
components necessary such as the Microcontroller. We
also discuss the frontend and backend creation and
utilization in the project and explain how we connected all
these components to yield us a working system.

II. SystEm CONCEPT

The goal of our smart heating box is to heat customers'
food until they arrive to pick it up. This is because of the
common complaint that food gets cold after being created
while waiting for the customer to pick it up. Our device is
a wooden box capable of holding different types of foods.
When a customer orders food, a confirmation email will
be sent to them with a confirmation and a QRcode to scan
whenever they go to the store and pick it up. This barcode
unlocks the box and they can now open the door and leave
with their food. The box’s temperature can be set by the
customer while placing an order. The temperature of the
box will not go above this temperature by using a
temperature sensor.

A. Member Responsibilities

Each person has a key part to create our project that laid
the foundation. In the table below, the group members’
names and what their roles are in the project are shown.
After careful planning and setting milestones for our
project, we set out to fulfill the project's specifications.
Although we each have individual tasks, we always will
help each other whenever we need it.

Group Member Main Responsibility

Ahmed Kazzoun Embedded Hardware

Chaitanya Vemuri Web Application
(Backend)

Austin Tillotson Web Application
(Frontend)

Haafiz Shafau Housing and Hardware

Table 1: Group Members and Their Responsibilities
B. Block Diagram

Although each of us is responsible for different parts of
the project, we must all have a good understanding of the
project. This is important so everyone can have a vision of
how the project should be like.. The block diagram for the
project is included below.

MongoDB Lock
Heroku WiFi Barcode
Scanner
Web App
R — PCB
Microcontroller
Heating Pad ~—— l | LcD Display
Temperature
Sensor
Hardware
Haafiz Shafau
Embedded
Ahmed Kazzoun
Software Housing
Austin Tillotson &
Chaitanya Vemuri

Fig. 1. HotBox Block Diagram
C. House of Quality

The following is a figure of our House of Quality. This
figure shows the marketing and engineering requirements
for our project and what correlation each has on each other
in respect to our project, from strong positive correlations
to strong negative or no correlation.

=3 | = |Production Cost
Web app 1
"~ [Communication
— |5 [Temperature
* |~ | Regulation
+ |Security

|2 | = |pimensions

N Power
= |consumption

Size)

Ease of Use {

Reliable

ol e = g
s
[

11 T
Temperature (1 T
Targets for Engineering Requirements | 15%/13"/12" | <$150 100 watts WIFI

Quality

11 1

)

(+)

Easy to Maintain (+)
)

)

140F - 250F |QR Code

Fig. 1. HotBox House of Quality
D. Design Constraints

The first of the constraints of this project are economic
and time constraints. These constraints come from the fact
that, as students doing this project for a class course, we
have a limited amount of time to get everything done.
Everything for this project comes out of our pockets so we
also must keep the product affordable. We also have a
limited amount of time to build a prototype, test the
prototype, and fix and adjust it as necessary. We also have
the added time constraint of taking this semester over
summer, giving us less total time to get our product built
as compared to if we took it in fall. This time constraint
will be one of the major constraints of our group and must
be accounted for and prioritized to ensure the project gets
finished.

Health and Safety constraints for the product are vast.
Some previously mentioned constraints stem from these
constraints. The product must be built from safe materials.
The product should not produce any gas or other
substance that could cause harm to an individual using the
product. The product must have safe and proper wiring to
ensure the electronics of the product will not cause sparks
or electrocute an individual using the product. The product
should maintain the heat inside safely, not letting it leak
into the surrounding or transfer into the outside material
that could risk burning an individual.

Manufacturability and sustainability constraints will
impact our project in the development process.
Manufacturability constraints are the manufacturability
limitations. These limitations restrict the parts and
components that can be used in our project’s design to
parts and components that can be manufactured. For us,
this will limit the parts we can use to those that are
actively manufactured and open to purchase. This also
restricts our electronics to be under manufacturing
standards so they can be sent and manufactured after the
design process.

In January, 2020, the US reported its first case of the
disease Coronavirus Disease 2019, stemming from the
virus SARS-CoV-2. More commonly known as Covid 19,
this disease would rapidly grow in cases and officially be
declared a pandemic in March 2020. This would lead to
many the closing of businesses, public spaces, and
importantly for us, college campuses. Covid 19 has
brought about many challenges to overcome for this
project, resulting in constraints not usually present for the
Senior Design project. Covid 19 has resulted in
unprecedented times for everyone.

III. HARDWARE COMPONENTS

In this section, we look at and study previous projects,
relevant parts, and different technologies that are available
for our project. At the start of this project, we needed to do
some significant research on these parts to find the best
combination of efficient and compatible parts.

A. WI-FI Module

The ESP32 is the Wifi Module we decided to use. It is
an upgrade from another ESP8266 Wi-Fi module. The
ESP32 supports bluetooth and 2.4 GHz bandwidth. The
purpose of a WIFI card is to communicate with the
restaurant's web application to send notifications to the
users that notify them when the food is ready to be heated.
It is designed for performance, versatility, and reliability in
a wide array of applications. There are IEEE 802.11
standard security features all supported, including WFA,
WPA/WPA2 and WAPIL. The ESP32 Development Board
is made with the official WROOM?32 module. There is a
built-in USB-to-Serial converter, automatic bootloader
reset, Lithium Ion/Polymer charger.

We will use the ESP32 to communicate with our server.
We coded the ESP32 module to make certain HTTP
requests to the server which affects the MongoDB.
Because of the discussed security features the ESP32
provides, the security of the WiFi is satisfactory.

B. 4-Channel Relay Module

A 4 Channel Relay Module is an easy way to use our
Arduino to switch high voltages and high current loads.
The board is 5V logic compatible and uses 4 digital
outputs to control 4 individual relays. Each relay has the
common, normally open, and normally closed pin broken
out to a convenient 5.0mm pitch screw terminal. The
contacts on each relay are specified for 250VAC and
30VDC and 10A in each case, as marked on the body of
the relays. This is a 4-channel relay interface board, which
can be controlled directly by a wide range of
microcontrollers such as Arduino, AVR, PIC, ARM, PLC,
etc. It is also able to control various appliances and other
equipment with large current. This is widely used for all
MCU control, industrial sector, PLC control, smart home
control.

C. Barcode Scanner

A barcode scanner will be used to scan barcodes from
customers when they are ready to pick up their food from
the restaurant. Barcode scanners record and translate
barcodes that have a striped image with alphanumeric
digits underneath it. Scanners can read different types of
barcodes that provide various types of properties and
functionalities. The barcode scanner that we will be using

will send information to a database through a wired
connection to the ESP32 module. Barcodes will be sent
out in emails whenever a user places an order. We made a
collective decision that using QR codes is the most
efficient and most reliable way to scan barcodes. When a
user scans a barcode, the box will determine if it is the
correct barcode for that order. If it is not a correct barcode,
the box will not unlock. If the barcode is correct, the box
will unlock and the customer will be able to leave with
their food.

D. Solenoid Lock

To have increased security on our device, we decided to
use this particular lock. This lock is a solenoid lock that
can be programmed by a MCU. The size of this lock is
small enough for a cabinet which makes it perfect for our
project. This solenoid in particular is nice and strong, and
has a slug with a slanted cut and a mounting bracket. It is
basically an electronic lock, designed for a basic cabinet,
safe, or door. Normally the lock is active so you cannot
open the door, because the solenoid slug is in the way. It
does not use any power in this state. When 9-12VDC is
applied, the slug pulls in so it does not stick out anymore
and the door can be opened.

The lock is only engaged when the Box gets new order
information loaded in from the server and ESP32. It stays
locked and secure until a customer is ready to pick up
their order by scanning the barcode that will be sent
through an email. When it unlocks, the customer is free to
leave with their order.

E. Temperature Sensor

The temperature sensor is used inside the interior of the
box to measure the temperature of the box at a given time.
There are a couple aspects to be noted that this sensor
accomplishes. First, it ensures the box does not reach
temperatures that will overheat or cook the food, as it is
meant only to keep the food warm. Second, it ensures the
box does not exceed the temperature that the customer set
when they made an order. In the application, a customer
can choose a preset of what kind of heating they want for
their food. These presets have a set temperature that
ensures the food will stay warm but not overheat. If the
temperature detected from the sensor exceeds the required
amount, the heating pad will turn off and wait until it
reaches a certain temperature until it turns back on.

F. Heating Pad

The heating pad is the main component of our project.
This is where the heat will resonate from. It is also where
the food will rest on top of. So by convention, the food
should warm up really quickly. The specific heating plate

we chose supports what we need and requires 24V to
operate.

The Creativity Heated Bed features an upgraded, full
gold processed hot bed plate. This one is insulated with
cotton, which improves heat conduction and
heat-resistance performance. It features high sensitivity,
rapid response, good stability, and high reliability.

G. Power System

Due to the nature of our project, we must carefully look
at the nature and design of the hardware components we
use. The power system must be able to power all the
devices and components present in and around the box.
Each component has varying voltage ratings and current
consumption. The microcontroller and the components
connected to it operate at a 5V DC, however, the solenoid
lock operates at 12V DC. In terms of current, multiple
components will not be able to just be powered by our
arduino, due to the max current of the arduino being
500mA over USB or 800mA through the Wall Wart power.
This means some components will require an external
source in order for them to properly function inside the
box. Failure to properly connect components to the proper
source ratings and requirements can damage the sensors
and can cause our system to fail as a whole. All these
components with varying requirements must be powered
from a single wall outlet cable for the ease of the user.
This means we will have to take our raw 120V AC wall
voltage and split it into different voltages that are ideal for
the components in the system. The 120V AC wall voltage
will first be converted to 24V DC 20A using an AC-DC
transformer. This 24V DC voltage will be used to power
the heating bed. The 24V DC source will then be
converted into 12V DC 1A for the solenoid lock, and 5V
DC 10A for the microcontroller and the rest of the
components.

H. LCD Display

The LCD display is going to be used in our project to
display the Box Number of the current box. This is
important because, when a customer orders from the
website, they get an email with their barcode and the exact
box number that currently has their order. This is to
differentiate if there are multiple boxes in a restaurant.
The LCD display will also show when the box is unlocked
and stopped heating when a customer scans their barcode.

IV. HARDWARE DESIGN

This section will contain all the design choices we made
for the HotBox. We will discuss the housing design of the
box, our PCB design, and all the embedded parts that were
used to create the box.

A. Housing Design

In this section we will mainly be going over the housing
design of the box and how it will be constructed. The
material of the housing of the box will be plywood due to
the inexpensiveness and the ease of manipulating and
editing the wood to meet our project needs. The wood we
purchased also had excellent thermal retention so that
would aid with the insulation of the box. The dimensions
of the box heavily relies on the dimensions of the heating
pad we decided to use. Our heating pad is a square base
coming in at 310mm x 310mm (12.20 x 12.20 inches) and
3mm (.12 inches) thick. This is perfect to fit the majority
of different food sizes. The heating pad will sit on the
bottom of the inside of the box. The bottom of the heating
pad features insulated cotton lined with aluminum so that
helps with thermal conductivity inside the box. We want
the height of the box to have enough clearance for the
customer to pick their food from the box, however not too
much clearance in order to heat adequately through the
box. The shorter the height of the box, the less time,
energy and space needed to heat the overall interior of the
box, making it more efficient. The box is made up of three
main compartments; the interior heating space, the upper
shelf for other electrical hardware components, and the
power system storage unit.

The interior of the box will be lined with a semi thick
aluminum lining in order to improve heat dissipation and
heat retention inside the box. Inside the interior portion,
the only components present are the heating plate, used for
the main heating of the box, and the LM75A temperature
sensor that is used to regulate the inside temperature of the
interior of the box. In order to keep the contents of the
interior safe and secure, we installed a door as well. The
door features two regular stainless steel hinges that open
the door outward toward the customer for them to take
their food. The solenoid lock is also on the door with the
latch present on the box itself in order to catch the lock
and secure the contents inside. The door is also insulated
as well to prevent any heat from escaping.

Right above the interior of the box, we have the upper
slide out shelf portion that holds the rest of the main
hardware components. The upper portion is vented in
order to prevent overheating and is properly sealed off to
prevent heat dissipation from the interior portion of the
box. On the shelf, the main components present will be the
4 channel relay, PCB microcontroller, the LCD display,
and the barcode scanner. For the barcode scanner and the
LCD display, we placed an acrylic transparent plexiglass
on the front of the upper portion in order for customers to
be able to scan in QR codes/barcodes and view their order
information for validation on the display.

The back of the box features a small compartment that
houses the overall wiring and power system of the project.
The AC-DC transformer and the necessary DC-DC
converters to operate the hardware are also present inside.
This compartment is also vented properly in order to
prevent overheating which could damage our system. The
excess wiring that we had was also kept in this
compartment for simplicity and ease.

Part Leng Wid Heig Volu
th(in) th(@n) ht(in) me
(in”3)

Outer Box 14” 14” 14”

Interior 13”7 14”7 127

Electronics 14.5” 14.5 2.5”
Compartment ?

Transforme 14”7 5-% T-Ya
r ” 2
Compartment

Door 13-% 1 117

Lt}

Table.2. Box Dimensions
B. PCB Microcontroller

The microcontroller is the main unit communicating to
all the hardware components and essentially the
component controlling the project. Initially, when
choosing our microcontroller, we were looking for a
controller that could not only support our components, but
other components in the future. We decided to go with the
Atmega2560 at first, which featured 4-UART, 1-12C and
5-SPI peripherals for communication. This was perfect for
us because a lot of the components we decided on using
have open source libraries which are supported with the
Atmega2560. Also it featured 4-UART interfaces which
bodes well for our system because UART is a key
communication method with various devices such as the
wifi module and barcode scanner. However, with all our
necessary components installed and connected, we
realized we have too much space and decided to minimize
the project by going with the Atmega328 which has 28
pins instead of 54 pins on the Atmega2506. Atmega328
still features the same communication protocols, so this
did not cause any problems when switching controllers.

For the custom PCB, we designed the schematic on
EasyEDA and used JLPCB for the manufacturing and
SMT assembly. We opted in having not only the

microcontroller on board, but the wifi module as well
which significantly reduced our final project size. We
designed the custom PCB to include parts for each
individual component connected to the microcontroller
and the wifi module as well.

C. Wireless Communication

For communication to other devices, the backend of the
ESP32 will be responsible. It’s key for us to get this
executed as best as possible because this is one of the key
features of the box. The ESP32 will be run together with
the ATMega328 and will communicate with each other
using UART. The ESP32°s I/O pins operate at a 3.3V logic
level meaning we will have to use a logic level converter
for this to fully function. For the supply voltage, we have
a choice between 3.3V DC and 5V DC for the ESP32.

D. LCD Display

An LCD display will be present on the front of the box
where users can view the order information of the box,
allowing a user to find their respective box. The display
will communicate with the ATMega328 to display the
corresponding order numbers respective of the box’s
current order. The display will communicate to the
ATMega via I2C similarly to the temperature sensor,
meaning only 4 pins are required for use.

E. Relay Module

For components that have no smart features and/or no
ways of directly communicating with the microcontroller,
a relay is necessary. For the relay module, we opt in using
a 4 channel 5V relay module that allows us to connect
components to the relay and use our microcontroller to
send a 5V signal to turn it on or off. In our design we
connect the heating pad and solenoid lock to the relay and
wire the correct voltages together with the components to
ensure proper functionality.

F. Barcode Scanner

For customer order validation we decided to use a
barcode scanner to scan in the codes the customer receives
when an order is ready to be picked up. The barcode we
opted in using was the Waveshare Barcode Scanner
Module. This barcode scanner is able to read various
common 1D/2D barcodes such as a barcode, QR code, etc.
And due to its small form factor, it fits into our system
perfectly. The module features UART and USB as its two
main communication interfaces. The module requires a 5V
DC source to operate, however, the logic level is at 3.3V.
Normally this would be a problem because the
ATMega328 operates at a 5V logic level, but since we
have the ESP32 WiFi module present, which operates at a
3.3V logic level, we are able to use the barcode scanner
without having to level shift the connections. And we use

the UART communication interface to communicate
between the wifi module and the scanner.

V. SOFTWARE DESIGN

This section will cover the software design choices and
overall flow of our project. This project contained
embedded software for the physical project and
frontend/backend software for the demo web application.
Understanding how all the software communicates and
functions is vital for having a full understanding of the
project. This section will begin by covering the embedded
software of the project and end with the highest written
code, the demo web application.

A. Microcontroller software design

Our ATmega2560 uses the Arduino Software IDE. It is
a great piece of software which allows users to write code
and upload it straight to the device through USB. To assist
in the development process, Arduino includes many
libraries which assists in the development of the required
embedded functionality. Another benefit of the Arduino
IDE is that the serial data being sent from the Arduino
board is done directly within the IDE. This is a huge help
when dealing with the UART protocol.

The code is constructed in a way where it gets
initialized once it gets plugged into the power and then
runs a loop. Inside the loop, there are several infinite loops
that define the states the box is in. For example, after the
board gets initialized, the board sits in a loop until an
order from the ESP32 comes through and loads the box.
The code also controls the main components of the box
like the Relay switch which controls the lock and the
heating pad.

B. ESP32 Module Software Design

The ESP module is also programmed by the Arduino
IDE. We needed to download libraries to get it set up and
be able to program with the Arduino IDE. The reason we
chose to do this is because, as discussed above, the
Arduino software is very helpful when using multiple
unique libraries compared to the other software
applications out there.

The ESP32 code behaves similarly to normal Arduino
code; there is an initializing phase where the ESP32
connects to the local internet. After this, it goes into a loop
until it receives an order from the server. We get orders
from the server by making HTTP requests from the ESP32
to the hosted server. The server sends data in the form of
JSONSs because it is more efficient to interpret. When the
ESP32 receives this data, it communicates to the MCU
through the Serial Monitor.

C. Web Application

The webapp design was chosen to demonstrate the
functionality of the project as if the HotBox was being
used in a restaurant setting. The webapp project contains
just under 200 commits with hundreds of lines of
JavaScript code. The app is made up of three main
portions of code; the frontend, backend, and database.

D. Frontend

The frontend, designed using React, contains Status and
Order pages for the user to use. The Status page
implements a status table displaying the status of each box
in the system and the order that is or was last contained in
each box. This page also contains admin controls to add,
delete, or lock a box, which can only be accessed using an
admin pin. The Order page contains an order form
designed to demonstrate how it would function in a
restaurant setting. When completed, the user will receive
an email with their order’s QR code which is used to
unlock the box. The frontend communicates all this
information to or from the database using the backend API
endpoints via fetch requests.

E. Backend

The backend was designed using NodeJS and Express,
communicating with the frontend and the database by
using all 8 of the API endpoints we created. Some major
examples of endpoints include “GiveOrder”, “AddBox”,
and “LockBox”. The “GiveOrder” endpoint handles
creating an order and sending that order to an available
box. Along with this, it also sends an email to the
customer that contains their order number, the box it is
stored in, and a QR code that will unlock the
corresponding box. To create the QR code, we use the
npm package “qrcode” which provides a qr code
generator. The process occurs as follows, once the
“GiveOrder” endpoints is called, we randomly generate an
order number, convert it to a string, and then convert it to a
data URL. This allows us to send it as an attachment in
our email which is promptly sent once the endpoint is
called. An example of what the QR code would look like
is shown in the following image:

To send the email to a customer, we use the
“nodemailer” npm package which allows us to use an
email account and programmatically send emails to
anyone. As mentioned earlier, we add the QR code as an
attachment so users can open the box with it.

Another major endpoint we used was the “AddBox”
endpoint. This endpoint takes no input, but updates the
database with a new document that is linked to a specific
box. The BoxID field is a randomly generated hex value
that is used for the backend to reference specific boxes.
Once the new document, or “boxModel”, is created, we
save it to the database and return all the values in that
document. On the website, this is simply shown as the
“Add Box” button after unlocking admin privileges.

Another endpoint that we use in the backend is the
“LockBox” endpoint. As mentioned in the previous
paragraph that details the frontend, this endpoint is only in
use once the admin code is inputted by a user. This was a
late addition to the web application, but we deemed it a
necessary one. Essentially, the endpoint takes a box
number and finds that box in the database. Once it does, it
replaces the value of the “Empty” field to false, therefore
updating the table shown on the status page and triggering
the embedded code to lock the box..

For the remaining endpoints, they are all rather small
and only do single tasks, so we will describe them all in
this paragraph. The “GetOrder” endpoint is used to take an
existing order from the database and send it to a box. This
is mainly for the embedded side of the programming. The
“GetStatus” endpoint is used to return the status of the
box, as in returning the value of the Empty field of a
specific box. It takes the BoxID from the URL parameters
and searches the database for that matching BoxID. Once
it finds a match, it returns the value of the Empty field for
that document. The purpose of the “DeleteBox™ endpoint
is to delete a box from the database by taking the
BoxNumber from the URL and searching the database
with the same method as the GetStatus endpoint. The
“BoxStatus” endpoint updates the Empty field for a
specific box. This is used for the table of boxes on the
Status page of the website. The “BoxStatusEmbedded”
has mainly the same functionality, but is used for
communication between the embedded programming and
the database.

F. Database

For the database, we opted to use MongoDB as it is a
NoSQL database, along with the fact that all the authors
had prior experience with it. In our database, we have two
collections, the boxes collection and the counters
collection. The boxes collection stores all of the
information of our boxes in documents while the counters

collection is used for incrementing the “BoxNumber” field
in the boxes collection. For each document in the boxes
collection, we have a structure that they must all follow.
When the “AddBox” endpoint is called, an example of the
document created in the database is shown in the
following image:

_id: object1d("eefdcafleshbag2eonqnchoas
Empty: trus

Temperature: @

BoxID: "bessaaf29esi74e9”

BoxNumber: 7

v'e

The schema is as follows: the “Empty” field that shows
if that box has anything in it represented by a bool, the
“Temperature” the box is set to which defaults to 0 when
creating a box, the “BoxID” field which is a randomly
generated hex value that is used for the backend to
reference each box, and the “BoxNumber” field that is
used for the frontend to reference each box. The
“BoxNumber” field is automatically incremented using the
“mongoose-sequence” npm package by creating the
aforementioned counters collection to keep track of the
most recent box number. To interact with the database, we
use the “mongoose” npm package which is a MongoDB
object modeling tool that works in an asynchronous
environment.

VI. CoNcLUSION

The main goals of the HotBox are to offer solutions for
customers picking up cold food, reducing traffic and
waiting times for customers and delivery drivers picking
up food, and adding a contactless option for picking up
food during the pandemic. To achieve this, we had to put
everything we have learned over our undergraduate
careers to the test and demonstrate mastery of these design
concepts to produce a functional project that achieves the
goals we set out. We created a multi-tier product that can
take orders from a customer, direct an employee to which
box the food should be set in, and allow the customer to
pick up their food in a contactless manner from a secure
box, all while ensuring the food is warm when they
retrieve it.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and
support of Dr. Richie, for the amount of assistance guiding
and educating us through our project.

The authors also wish to acknowledge the support of Dr.
Wei, who was always available and willing to answer any
questions or concerns we had during Senior Design as a
whole.

The authors want to extend admiration and
congratulations to all the groups involved in this 2021
Senior Design. Despite Covid-19, online classes, and the
general state the world is in from it, these groups have
pushed through these hardships to produce impressive
work. It has been an honor to work alongside and be part
of this group of future engineers.

We offer our thanks to the professors that were willing
to take time out of their busy schedules to review the
project we have dedicated so much time and effort towards
designing and developing over these last six months.

REFERENCES

[1] Creativity. “Heated Bed 24V Black Parts Heatbed Hot
HotBed 3D Printers Part Heat 235mmx235mm Aluminum
Plate 3m 3DprinterAccessories.” Derived:
http://www.creativity3dprinter.com/HeatedBed 24VHeatbe
d 235mmx235mmHeatbed

[2] MongoDB. Firebase vs MongoDB. MongoDB:
https://www.mongodb.com/firebase-vs-mongodb#:~:text=M
ongoDB %20is%20a%20more %20robust.purely %20a%20c]
oud%?20database%20service

[3] Espressif Systems. ESP32 Datasheet. Retrieved from

Expressif:
https://www.espressif.com/sites/default/files/documentation/
Qa-esp8266ex_datasheet en.pdf

[4] Waveshare. Barcode Scanner Module User Manual.
Derived:

https://www.waveshare.com/w/upload/d/dd/Barcode Scann
er_Module_Setting Manual EN.pdf

[5] Arduino. ATmega640/1280/1281/2560/2561 Datasheet.
Retrieved from Microchip:
http://ww1.microchip.com/downloads/en/DeviceDoc/ATme

2a640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf
[6] Arduino. ATmega48A/PA/88A/PA/168A/PA/328/P

Datasheet. Retrieved from Micorchip:
https://ww1.microchip.com/downloads/en/DeviceDoc/ATm

(7]

egad8A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pd
f

Wasp. “Barcode Scanners: How Do They Work?” Derived:
https: aspbarcode.com/buzz/how-barcode-scanners-

work

THE AUTHORS

Chaitanya Vemuri is a 21-year old
Computer Engineering student
graduating in the beginning of August.
Chaitanya’s career goals include
working as a Software Engineer in the
aerospace industry with an intent to
get his masters degree within the next
5 years.

#. Austin Tillotson is a 23-year old
Computer Engineering student. Austin
will graduate in Fall 2021 due to a
remaining elective to take. Austin’s
| career goal is to work as a Software

Engineer/Developer. Austin plans to
get a Masters but does not know what
to Master in yet.

Haafiz Shafau is a 2l-year-old
Computer Engineering student
graduating in the beginning of August.
He plans on finding a career in the
computer hardware industry. He plans
% on obtaining his masters in the near
| future.

Ahmed Kazzoun is a 2l-year-old
Computer Engineering student
graduating in the beginning of August.
Ahmed’s career goals include getting
in the space industry as a Software
. Engineer. He intends to get his masters
- at alater date.

http://www.creativity3dprinter.com/HeatedBed_24VHeatbed_235mmx235mmHeatbed
http://www.creativity3dprinter.com/HeatedBed_24VHeatbed_235mmx235mmHeatbed
https://www.mongodb.com/firebase-vs-mongodb#:~:text=MongoDB%20is%20a%20more%20robust,purely%20a%20cloud%20database%20service
https://www.mongodb.com/firebase-vs-mongodb#:~:text=MongoDB%20is%20a%20more%20robust,purely%20a%20cloud%20database%20service
https://www.mongodb.com/firebase-vs-mongodb#:~:text=MongoDB%20is%20a%20more%20robust,purely%20a%20cloud%20database%20service
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.waveshare.com/w/upload/d/dd/Barcode_Scanner_Module_Setting_Manual_EN.pdf
https://www.waveshare.com/w/upload/d/dd/Barcode_Scanner_Module_Setting_Manual_EN.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf
https://www.waspbarcode.com/buzz/how-barcode-scanners-work
https://www.waspbarcode.com/buzz/how-barcode-scanners-work

